If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2=192^2
We move all terms to the left:
12x^2-(192^2)=0
We add all the numbers together, and all the variables
12x^2-36864=0
a = 12; b = 0; c = -36864;
Δ = b2-4ac
Δ = 02-4·12·(-36864)
Δ = 1769472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1769472}=\sqrt{589824*3}=\sqrt{589824}*\sqrt{3}=768\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-768\sqrt{3}}{2*12}=\frac{0-768\sqrt{3}}{24} =-\frac{768\sqrt{3}}{24} =-32\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+768\sqrt{3}}{2*12}=\frac{0+768\sqrt{3}}{24} =\frac{768\sqrt{3}}{24} =32\sqrt{3} $
| -.2x^2+20x=500 | | 7+6x^2-13x=0 | | 5/3x=37 | | 5x^2-7x-120=0 | | 17c+44=15c+46 | | 100-10x=40+40x | | 2c+19=13c+8 | | (x/8)+12=16 | | s=s+s+s+(-4s)+s+s | | 9m^2+5=-9m | | (x/4)+10=16 | | 2c+19=13c+8=17c+44=15c+46 | | 5x-13=x+13 | | 3(3(s)+8)=69 | | 5x+5=−10 | | 217.7=4(3.14)(x) | | 3b+38=b+40 | | 20=5,5x | | 6(2(l)+2)=120 | | 168=-3x+2(-4x+18) | | 10x-20=135 | | 9y-3=5y+7 | | 14-2(2x-5)=42 | | 21−2c=19 | | 4x+9+4x+9+6x-29+6x-29=360 | | 2/5(x-2)=17/5-1/5x | | 8+(n)=12 | | 3x^2-93x-378=0 | | 17v+53=3v+67 | | 44 = w8+ 41 | | x^2-31x-126=0 | | 5 = f+134 |